OFFSET
0,2
COMMENTS
Binomial transform of A095121. - R. J. Mathar, Oct 05 2012
Create a triangle having its left and right border both equal to the n-th row of Pascal's triangle, and internal terms m(i,j) = m(i-1,j-1) + m(i-1,j). Then the sum of all elements equals a(n). - J. M. Bergot, Oct 07 2012, edited by M. F. Hasler, Oct 10 2012
First differences of A090326 (with offset 1). - Wesley Ivan Hurt, Jul 08 2014
REFERENCES
H. Gupta, On a problem in parity, Indian J. Math., 11 (1969), 157-163.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
H. Gupta, On a problem in parity, Indian J. Math., 11 (1969), 157-163. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
FORMULA
G.f.: ( -1+3*x-4*x^2 ) / ( (x-1)*(3*x-1)*(2*x-1) ). - Simon Plouffe in his 1992 dissertation
a(n+1) - a(n) = 2*A027649(n). - R. J. Mathar, Oct 05 2012
E.g.f.: exp(x)*(1 - 2*exp(x) + 2*exp(2*x)). - Stefano Spezia, May 18 2024
EXAMPLE
From J. M. Bergot and M. F. Hasler, Oct 10 2012: (Start)
For n=3, the triangle with left and right border (1,3,3,1) and internal terms m(i,j) = m(i-1,j-1) + m(i-1,j) is
1
3 3
3 6 3
1 9 9 1
and the sum of all the elements is 39 = a(3). (End)
MAPLE
MATHEMATICA
CoefficientList[Series[(-1 + 3*x - 4*x^2)/((x - 1)*(3*x - 1)*(2*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
PROG
(Magma) [2*(3^n - 2^n)+1 : n in [0..30]]; // Wesley Ivan Hurt, Jul 08 2014
(PARI) a(n)=2*(3^n-2^n)+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Wesley Ivan Hurt, Jul 08 2014
STATUS
approved