login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257290
Number of 3-Motzkin paths of length n with no level steps at even level.
4
1, 0, 1, 3, 11, 39, 140, 504, 1823, 6621, 24144, 88380, 324699, 1197045, 4427565, 16427385, 61129025, 228103185, 853399640, 3200710680, 12032399045, 45332769075, 171148151095, 647412581643, 2453529142471, 9314461044639, 35419207688050, 134894888442714, 514506926871927
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{i=0..floor(n/2)} 3^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the n-th Catalan number A000108.
G.f.: (1 - 3*z - sqrt((1-3*z)*(1-3*z-4*z^2)))/(2*z^2).
a(n) ~ sqrt(5) * 4^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (n+2)*a(n) +3*(-2*n-1)*a(n-1) +5*(n-1)*a(n-2) +6*(2*n-5)*a(n-3)=0. - R. J. Mathar, Sep 24 2016
EXAMPLE
For n=3 we have 3 paths: UH1D, UH2D, UH3D.
MATHEMATICA
CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2)) \\ G. C. Greubel, Feb 14 2017
CROSSREFS
Sequence in context: A289834 A007482 A134760 * A371758 A281482 A132889
KEYWORD
nonn
AUTHOR
STATUS
approved