login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-Motzkin paths of length n with no level steps at even level.
4

%I #27 Feb 14 2017 22:11:30

%S 1,0,1,3,11,39,140,504,1823,6621,24144,88380,324699,1197045,4427565,

%T 16427385,61129025,228103185,853399640,3200710680,12032399045,

%U 45332769075,171148151095,647412581643,2453529142471,9314461044639,35419207688050,134894888442714,514506926871927

%N Number of 3-Motzkin paths of length n with no level steps at even level.

%H G. C. Greubel, <a href="/A257290/b257290.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{i=0..floor(n/2)} 3^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the n-th Catalan number A000108.

%F G.f.: (1 - 3*z - sqrt((1-3*z)*(1-3*z-4*z^2)))/(2*z^2).

%F a(n) ~ sqrt(5) * 4^n / (sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Apr 21 2015

%F Conjecture: (n+2)*a(n) +3*(-2*n-1)*a(n-1) +5*(n-1)*a(n-2) +6*(2*n-5)*a(n-3)=0. - _R. J. Mathar_, Sep 24 2016

%e For n=3 we have 3 paths: UH1D, UH2D, UH3D.

%t CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 21 2015 *)

%o (PARI) x='x+O('x^50); Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2)) \\ _G. C. Greubel_, Feb 14 2017

%Y Cf. A090345, A025266.

%K nonn

%O 0,4

%A _José Luis Ramírez Ramírez_, Apr 20 2015