login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257288
a(n) = 7*8^n-6*7^n.
5
1, 14, 154, 1526, 14266, 128534, 1129114, 9738806, 82851706, 697402454, 5821341274, 48265581686, 397988613946, 3266956634774, 26716987140634, 217805235562166, 1770927253556986, 14366815611873494, 116330307978911194, 940412945418752246, 7591696934462256826
OFFSET
0,2
COMMENTS
First differences of 8^n-7^n = A016177.
a(n-1) is the number of numbers with n digits having the largest digit equal to 7. Note that this is independent of the base b > 7.
Equivalently, number of n-letter words over a 8-letter alphabet, which must not start with the last letter of the alphabet, and in which the first letter of the alphabet must appear.
FORMULA
G.f.: (1-x)/((1-7*x)*(1-8*x)). - Vincenzo Librandi, May 04 2015
E.g.f.: exp(7*x)*(7*exp(x) - 6). - Stefano Spezia, Nov 15 2023
MATHEMATICA
Table[7 8^n - 6 7^n, {n, 0, 30}] (* Vincenzo Librandi, May 04 2015 *)
PROG
(PARI) a(n)=7*8^n-6*7^n
(Magma) [7*8^n-6*7^n: n in [0..20]]; // Vincenzo Librandi, May 04 2015
CROSSREFS
Cf. A016177.
Sequence in context: A097227 A377196 A229315 * A125426 A004986 A154248
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, May 03 2015
STATUS
approved