OFFSET
1,2
COMMENTS
Lim_{n -> infinity} a(n)/a(n-1) = 7 + sqrt(7) = 9.6457513110....
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..750
Index entries for linear recurrences with constant coefficients, signature (14,-42).
FORMULA
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 14*a(n-1) - 42*a(n-2) for n>1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 14x + 42x^2). (End)
E.g.f.: (1/sqrt(7))*exp(7*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 08 2016
MAPLE
a:= n-> (<<0|1>, <-42|14>>^n)[1, 2]:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 22 2013
MATHEMATICA
Join[{a=1, b=14}, Table[c=14*b-42*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
LinearRecurrence[{14, -42}, {1, 14}, 25] (* or *) Table[( (7 + sqrt(7))^n - (7 - sqrt(7))^n )/(2*sqrt(7)), {n, 1, 25}] (* G. C. Greubel, Sep 08 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-7); S:=[ ((7+r)^n-(7-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
STATUS
approved