login
A154248
a(n) = ( (7 + sqrt(7))^n - (7 - sqrt(7))^n )/(2*sqrt(7)).
2
1, 14, 154, 1568, 15484, 150920, 1462552, 14137088, 136492048, 1317130976, 12707167648, 122580846080, 1182430803904, 11405635719296, 110016806306176, 1061198588076032, 10236074368205056, 98734700455677440
OFFSET
1,2
COMMENTS
Lim_{n -> infinity} a(n)/a(n-1) = 7 + sqrt(7) = 9.6457513110....
FORMULA
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 14*a(n-1) - 42*a(n-2) for n>1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 14x + 42x^2). (End)
E.g.f.: (1/sqrt(7))*exp(7*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 08 2016
MAPLE
a:= n-> (<<0|1>, <-42|14>>^n)[1, 2]:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 22 2013
MATHEMATICA
Join[{a=1, b=14}, Table[c=14*b-42*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
LinearRecurrence[{14, -42}, {1, 14}, 25] (* or *) Table[( (7 + sqrt(7))^n - (7 - sqrt(7))^n )/(2*sqrt(7)), {n, 1, 25}] (* G. C. Greubel, Sep 08 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-7); S:=[ ((7+r)^n-(7-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
CROSSREFS
Cf. A010465 (decimal expansion of square root of 7).
Sequence in context: A257288 A125426 A004986 * A006865 A263474 A154347
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
STATUS
approved