login
A154246
a(n) = ( (5 + sqrt(7))^n - (5 - sqrt(7))^n )/(2*sqrt(7)).
1
1, 10, 82, 640, 4924, 37720, 288568, 2206720, 16872976, 129008800, 986374432, 7541585920, 57661119424, 440862647680, 3370726327168, 25771735613440, 197044282245376, 1506551581411840, 11518718733701632, 88069258871603200
OFFSET
1,2
COMMENTS
Second binomial transform of A086901 without initial term 1.
Lim_{n -> infinity} a(n)/a(n-1) = 5 + sqrt(7) = 7.6457513110....
FORMULA
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 10*a(n-1) - 18*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 10*x + 18*x^2). (End)
E.g.f.: (1/sqrt(7))*exp(5*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 07 2016
MATHEMATICA
Table[Simplify[((5+Sqrt[7])^n -(5-Sqrt[7])^n)/(2*Sqrt[7])], {n, 1, 25}] (* or *) LinearRecurrence[{10, -18}, {1, 10}, 25] (* G. C. Greubel, Sep 07 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-7); S:=[((5+r)^n-(5-r)^n)/(2*r): n in [1..25]]; [Integers()!S[j]: j in [1..#S]]; // Klaus Brockhaus, Jan 07 2009
(Magma) I:=[1, 10]; [n le 2 select I[n] else 10*Self(n-1)-18*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 08 2016
(Sage) [lucas_number1(n, 10, 18) for n in range(1, 25)] # Zerinvary Lajos, Apr 26 2009
(PARI) my(x='x+O('x^25)); Vec(x/(1-10*x+18*x^2)) \\ G. C. Greubel, May 31 2019
CROSSREFS
Cf. A010465 (decimal expansion of square root of 7), A086901.
Sequence in context: A076288 A362508 A232332 * A037549 A238276 A287825
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
STATUS
approved