login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086901
a(1) = a(2) = 1; for n>2, a(n) = 4*a(n-1) + 3*a(n-2).
6
1, 1, 7, 31, 145, 673, 3127, 14527, 67489, 313537, 1456615, 6767071, 31438129, 146053729, 678529303, 3152278399, 14644701505, 68035641217, 316076669383, 1468413601183, 6821884412881, 31692778455073, 147236767058935
OFFSET
1,3
LINKS
Sela Fried and Toufik Mansour, Staircase graph words, arXiv:2312.08273 [math.CO], 2023.
Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
FORMULA
a(n) = ((c + 5)*b^n - (b + 5)*c^n)/14, where b = 2 + sqrt(7), c = 2 - sqrt(7).
From Ralf Stephan, Feb 01 2004: (Start)
G.f.: x*(1-3*x)/(1 - 4*x - 3*x^2).
a(n) = A015530(n) - 3*A015530(n-1) = 1 + 6*Sum_{k=0..n-2} A015530(k). (End)
a(n+1) = Sum_{k=0..n} 3^(n-k)*A122542(n,k), n>=0. - Philippe Deléham, Oct 27 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 3,3]^(n-1). - Gary W. Adamson, Mar 02 2008
G.f.: G(0)*(1-3*x)/(2-4*x), where G(k) = 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
E.g.f.: exp(2*x)*( cosh(sqrt(7)*x) - (1/sqrt(7))*sinh(sqrt(7)*x) ). - G. C. Greubel, Oct 28 2024
EXAMPLE
a(3) = 4*1 + 3*1 = 7;
a(4) = 4*7 + 3*1 = 31.
MATHEMATICA
a[n_]:=(MatrixPower[{{3, 2}, {3, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Transpose[NestList[Flatten[{Rest[#], ListCorrelate[{3, 4}, #]}]&, {1, 1}, 40]][[1]] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{4, 3}, {1, 1}, 41] (* G. C. Greubel, Oct 28 2024 *)
PROG
(PARI) A086901(n)=if(n<3, 1, 4*A086901(n-1)+3*A086901(n-2)) \\ Michael B. Porter, Apr 04 2010
(Haskell)
a086901 n = a086901_list !! (n-1)
a086901_list = 1 : 1 : zipWith (+)
(map (* 3) a086901_list) (map (* 4) $ tail a086901_list)
-- Reinhard Zumkeller, Feb 13 2015
(Magma) [n le 2 select 1 else 4*Self(n-1) +3*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 28 2024
(SageMath)
A086901=BinaryRecurrenceSequence(4, 3, 1, 1)
[A086901(n) for n in range(41)] # G. C. Greubel, Oct 28 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Rick Powers (rick.powers(AT)mnsu.edu), Sep 18 2003
EXTENSIONS
More terms from Ray Chandler, Sep 19 2003
STATUS
approved