OFFSET
1,3
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Sela Fried and Toufik Mansour, Staircase graph words, arXiv:2312.08273 [math.CO], 2023.
Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
FORMULA
a(n) = ((c + 5)*b^n - (b + 5)*c^n)/14, where b = 2 + sqrt(7), c = 2 - sqrt(7).
From Ralf Stephan, Feb 01 2004: (Start)
G.f.: x*(1-3*x)/(1 - 4*x - 3*x^2).
a(n+1) = Sum_{k=0..n} 3^(n-k)*A122542(n,k), n>=0. - Philippe Deléham, Oct 27 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 3,3]^(n-1). - Gary W. Adamson, Mar 02 2008
G.f.: G(0)*(1-3*x)/(2-4*x), where G(k) = 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
E.g.f.: exp(2*x)*( cosh(sqrt(7)*x) - (1/sqrt(7))*sinh(sqrt(7)*x) ). - G. C. Greubel, Oct 28 2024
EXAMPLE
a(3) = 4*1 + 3*1 = 7;
a(4) = 4*7 + 3*1 = 31.
MATHEMATICA
a[n_]:=(MatrixPower[{{3, 2}, {3, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Transpose[NestList[Flatten[{Rest[#], ListCorrelate[{3, 4}, #]}]&, {1, 1}, 40]][[1]] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{4, 3}, {1, 1}, 41] (* G. C. Greubel, Oct 28 2024 *)
PROG
(Haskell)
a086901 n = a086901_list !! (n-1)
a086901_list = 1 : 1 : zipWith (+)
(map (* 3) a086901_list) (map (* 4) $ tail a086901_list)
-- Reinhard Zumkeller, Feb 13 2015
(Magma) [n le 2 select 1 else 4*Self(n-1) +3*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 28 2024
(SageMath)
A086901=BinaryRecurrenceSequence(4, 3, 1, 1)
[A086901(n) for n in range(41)] # G. C. Greubel, Oct 28 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Rick Powers (rick.powers(AT)mnsu.edu), Sep 18 2003
EXTENSIONS
More terms from Ray Chandler, Sep 19 2003
STATUS
approved