|
|
A086903
|
|
a(n) = 8*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 8, a(n) = (4+sqrt(15))^n + (4-sqrt(15))^n.
|
|
4
|
|
|
2, 8, 62, 488, 3842, 30248, 238142, 1874888, 14760962, 116212808, 914941502, 7203319208, 56711612162, 446489578088, 3515205012542, 27675150522248, 217885999165442, 1715412842801288, 13505416743244862, 106327921103157608
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n+1)/a(n) converges to (4+sqrt(15)) = 7.872983... a(0)/a(1)=2/8; a(1)/a(2)=8/62; a(2)/a(3)=62/488; a(3)/a(4)=488/3842; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.127016... = 1/(4+sqrt(15)) = (4-sqrt(15)).
Twice A001091. - John W. Layman, Sep 25 2003
Except for the first term, positive values of x (or y) satisfying x^2 - 8xy + y^2 + 60 = 0. - Colin Barker, Feb 13 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
P. Bala, Some simple continued fraction expansions for an infinite product, Part 1
Tanya Khovanova, Recursive Sequences
Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
Index entries for linear recurrences with constant coefficients, signature (8,-1).
|
|
FORMULA
|
G.f.: (2-8*x)/(1-8*x+x^2). [Philippe Deléham, Nov 02 2008]
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = product {n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 4 - sqrt(15). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.12474 84992 41370 33639 ... = 2 + 1/(8 + 1/(62 + 1/(488 + ...))). Cf. A174502 and A005248.
Also F(-alpha) = 0.87474 74663 84045 35032 ... has the continued fraction representation 1 - 1/(8 - 1/(62 - 1/(488 - ...))) and the simple continued fraction expansion 1/(1 + 1/((8-2) + 1/(1 + 1/((62-2) + 1/(1 + 1/((488-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((8^2-4) + 1/(1 + 1/((62^2-4) + 1/(1 + 1/((488^2-4) + 1/(1 + ...))))))).
(End)
|
|
EXAMPLE
|
a(4) = 3842 = 8*a(3) - a(2) = 8*488 - 62 = (4+sqrt(15))^4 + (4-sqrt(15))^4 = 3841.9997397 + 0.0002603 = 3842.
|
|
MATHEMATICA
|
a[0] = 2; a[1] = 8; a[n_] := 8a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
CoefficientList[Series[(2 - 8 x)/(1 - 8 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2014 *)
LinearRecurrence[{8, -1}, {2, 8}, 30] (* Harvey P. Dale, Jan 18 2015 *)
|
|
PROG
|
(Sage) [lucas_number2(n, 8, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
(Magma) I:=[2, 8]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 15 2014
|
|
CROSSREFS
|
Cf. A086594, A058316, A006245, A009271, A005248, A174502.
Sequence in context: A332779 A116976 A132574 * A161566 A192516 A159476
Adjacent sequences: A086900 A086901 A086902 * A086904 A086905 A086906
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003
|
|
STATUS
|
approved
|
|
|
|