login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086905
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,floor(k/2)).
4
1, 0, 2, 1, 5, 5, 15, 20, 50, 76, 176, 286, 638, 1078, 2354, 4081, 8789, 15521, 33099, 59279, 125477, 227239, 478193, 873885, 1830271, 3370029, 7030571, 13027729, 27088871, 50469889, 104647631, 195892564, 405187826, 761615284, 1571990936
OFFSET
0,3
COMMENTS
Knödel walks starting and ending at 0, with n steps.
LINKS
H. Prodinger, The Kernel Method: a collection of examples, Séminaire Lotharingien de Combinatoire, B50f (2004), 19 pp.
FORMULA
G.f.: (sqrt((1+2*x)/(1-2*x))-1)/2/x/(1+x).
a(n) ~ 2^(n+3/2) / (3*sqrt(Pi*n)) * (1 - 2/(3*n)+ 3*(-1)^n/(4*n)). - Vaclav Kotesovec, Mar 02 2014
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 02 2014 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, k\2)); \\ Michel Marcus, Dec 04 2016
CROSSREFS
First column of triangle A101491.
Sequence in context: A119245 A128731 A129157 * A167638 A317878 A209108
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 19 2003
STATUS
approved