login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317878
Number of free pure symmetric identity multifunctions with one atom and n positions.
8
1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811
OFFSET
1,5
COMMENTS
A free pure symmetric identity multifunction (SIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a SIM, each of the g_i for i = 1, ..., k > 0 is a SIM, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in a SIM is the number of brackets [...] plus the number of o's.
LINKS
EXAMPLE
The a(8) = 5 SIMs:
o[o[o,o[o]]]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o,o[o]]
o[o,o[o]][o]
MATHEMATICA
allIdPMFOL[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h], Select[Union[Sort/@Tuples[allIdPMFOL/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdPMFOL[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved