OFFSET
1,5
COMMENTS
A series-reduced series-reduced free pure identity multifunction (with empty expressions allowed) (SRIM) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an SRIM, k is an integer greater than or equal to 0 but not equal to 1, each of the g_i for i = 1, ..., k >= 0 is an SRIM, and for i != j we have g_i != g_j. The number of positions in an SRIM is the number of brackets [...] plus the number of o's.
Also the number of series-reduced identity Mathematica expressions with one atom and n positions.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
EXAMPLE
The a(6) = 7 SRIMs:
o[o[][],o]
o[o,o[][]]
o[][o[],o]
o[][o,o[]]
o[o[],o][]
o[o,o[]][]
o[][][][][]
MATHEMATICA
allIdExprSR[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h], Select[Tuples[allIdExprSR/@p], UnsameQ@@#&]}], {p, If[g==0, {{}}, Join@@Permutations/@Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*(subst(serlaplace(y^0*polcoef(p, k)), y, 1)-v[k]))); v} \\ Andrew Howroyd, Sep 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved