The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317877 Number of free pure identity multifunctions with one atom and n positions. 8
 1, 0, 1, 0, 2, 2, 5, 10, 18, 46, 94, 212, 476, 1058, 2441, 5564, 12880, 29920, 69620, 163220, 383376, 904114, 2139592, 5074784, 12074152, 28789112, 68803148, 164779064, 395373108, 950416330, 2288438591, 5518864858, 13329183894, 32237132814, 78069124640 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS A free pure identity multifunction (PIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a PIM, each of the g_i for i = 1, ..., k > 0 is a PIM, and for i != j we have g_i != g_j. The number of positions in a PIM is the number of brackets [...] plus the number of o's. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 EXAMPLE The a(8) = 10 PIMs: o[o[o[o],o]] o[o[o,o[o]]] o[o[o[o]],o] o[o[o][o],o] o[o,o[o[o]]] o[o,o[o][o]] o[o][o[o],o] o[o][o,o[o]] o[o[o],o][o] o[o,o[o]][o] MATHEMATICA allIdPMF[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMF[h], Select[Tuples[allIdPMF/@p], UnsameQ@@#&]}], {p, Join@@Permutations/@IntegerPartitions[g]}]]]; Table[Length[allIdPMF[n]], {n, 12}] PROG (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018 CROSSREFS Cf. A000081, A001003, A003238, A004111, A052893, A053492, A277996, A280000, A317875. Cf. A317876, A317878, A317879, A317880, A317881. Sequence in context: A331540 A329676 A247354 * A075125 A081374 A243338 Adjacent sequences: A317874 A317875 A317876 * A317878 A317879 A317880 KEYWORD nonn AUTHOR Gus Wiseman, Aug 09 2018 EXTENSIONS Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 10:39 EDT 2024. Contains 373479 sequences. (Running on oeis4.)