login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,floor(k/2)).
4

%I #18 Feb 08 2017 02:08:25

%S 1,0,2,1,5,5,15,20,50,76,176,286,638,1078,2354,4081,8789,15521,33099,

%T 59279,125477,227239,478193,873885,1830271,3370029,7030571,13027729,

%U 27088871,50469889,104647631,195892564,405187826,761615284,1571990936

%N a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,floor(k/2)).

%C Knödel walks starting and ending at 0, with n steps.

%H G. C. Greubel, <a href="/A086905/b086905.txt">Table of n, a(n) for n = 0..1000</a>

%H H. Prodinger, <a href="http://www.mat.univie.ac.at/~slc/wpapers/s50proding.html">The Kernel Method: a collection of examples</a>, Séminaire Lotharingien de Combinatoire, B50f (2004), 19 pp.

%F G.f.: (sqrt((1+2*x)/(1-2*x))-1)/2/x/(1+x).

%F a(n) ~ 2^(n+3/2) / (3*sqrt(Pi*n)) * (1 - 2/(3*n)+ 3*(-1)^n/(4*n)). - _Vaclav Kotesovec_, Mar 02 2014

%t Table[Sum[(-1)^(n-k)*Binomial[k,Floor[k/2]],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Mar 02 2014 *)

%o (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k,k\2)); \\ _Michel Marcus_, Dec 04 2016

%Y Cf. A036256, A001405.

%Y First column of triangle A101491.

%K nonn

%O 0,3

%A _Vladeta Jovovic_, Sep 19 2003