login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036256
a(n) = Sum_{i=0..n} binomial(i,floor(i/2)).
9
1, 2, 4, 7, 13, 23, 43, 78, 148, 274, 526, 988, 1912, 3628, 7060, 13495, 26365, 50675, 99295, 191673, 376429, 729145, 1434577, 2786655, 5490811, 10691111, 21091711, 41150011, 81266611, 158825371, 313942891, 614483086, 1215563476
OFFSET
0,2
COMMENTS
Equals row sums of triangle A145972. - Gary W. Adamson, Oct 25 2008
a(n-1) is the graph bandwidth of the n-hypercube graph Q_n. - Eric W. Weisstein, Jul 12 2011
LINKS
L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Comb. Th. 1 (1966), 385-393.
Eric Weisstein's World of Mathematics, Graph Bandwidth
Eric Weisstein's World of Mathematics, Hypercube Graph
FORMULA
G.f.: 2/((1-z)*(1-2*z+sqrt(1-4*z^2))). - Emeric Deutsch, Nov 25 2003
a(n) ~ 2^(n+3/2) / sqrt(Pi*n) * (1 + (-1)^n/(12*n)). - Vaclav Kotesovec, Mar 02 2014
MATHEMATICA
Table[Sum[Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 20}]
Table[Piecewise[{{(1/2)*(-1 - I*Sqrt[3] - (3*Gamma[3 + n]*Hypergeometric2F1Regularized[1, (3 + n)/2, (4 + n)/2, 4])/Gamma[2 + n/2]), Mod[n, 2] == 0}, {((-1 - I*Sqrt[3])*Gamma[(1 + n)/2] - 4*n!*(Hypergeometric2F1Regularized[1, (2 + n)/2, (3 + n)/2, 4] + (2 + n)*Hypergeometric2F1Regularized[1, (4 + n)/2, (5 + n)/2, 4]))/(2*Gamma[(1 + n)/2]), Mod[n, 2] == 1}}], {n, 0, 20}] // Expand
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n, binomial(k, floor(k/2))), ", ")) \\ G. C. Greubel, Jan 24 2017
CROSSREFS
Partial sums of A001405.
Cf. A145972. - Gary W. Adamson, Oct 25 2008
Sequence in context: A280027 A026724 A054163 * A093629 A174566 A018182
KEYWORD
nonn
STATUS
approved