login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036259
Numbers k such that the multiplicative order of 2 modulo k is odd.
11
1, 7, 23, 31, 47, 49, 71, 73, 79, 89, 103, 127, 151, 161, 167, 191, 199, 217, 223, 233, 239, 263, 271, 311, 329, 337, 343, 359, 367, 383, 431, 439, 463, 479, 487, 497, 503, 511, 529, 553, 599, 601, 607, 623, 631, 647, 713, 719, 721, 727, 743, 751
OFFSET
1,2
COMMENTS
Odd numbers k such that A007733(k) = A002326((k-1)/2) is odd.
LINKS
EXAMPLE
2^3 = 1 mod 7, 3 is odd, so 7 is in the sequence.
MATHEMATICA
Select[Range[1, 999, 2], OddQ[MultiplicativeOrder[2, #]]&] (* Jean-François Alcover, Dec 20 2017 *)
PROG
(PARI) is(n)=n%2 && znorder(Mod(2, n))%2 \\ Charles R Greathouse IV, Jun 24 2015
(Python)
from sympy import n_order
from itertools import count, islice
def A036259_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:n_order(2, n)&1, count(max(startvalue, 1)|1, 2))
A036259_list = list(islice(A036259_gen(), 20)) # Chai Wah Wu, Feb 07 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved