login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089199
Primes p such that p+1 is divisible by a cube.
6
7, 23, 31, 47, 53, 71, 79, 103, 107, 127, 151, 167, 191, 199, 223, 239, 263, 269, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 499, 503, 593, 599, 607, 631, 647, 701, 719, 727, 743, 751, 809, 823, 839, 863, 887, 911, 919, 967, 971, 983, 991
OFFSET
1,1
COMMENTS
This sequence is infinite and its relative density in the sequence of primes is equal to 1 - Product_{p prime} (1-1/(p^2*(p-1))) = 1 - A065414 = 0.302498... (Mirsky, 1949). - Amiram Eldar, Apr 07 2021
LINKS
Leon Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, The American Mathematical Monthly, Vol. 56, No. 1 (1949), pp. 17-19.
MAPLE
filter:= proc(p)
isprime(p) and ormap(t -> t[2]>=3, ifactors(p+1)[2])
end proc:
select(filter, [seq(i, i=3..2000, 2)]); # Robert Israel, Jan 11 2019
MATHEMATICA
f[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[p=Prime[n]; If[f[p+1]>=3, AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
PROG
(PARI) ispowerfree(m, p1) = { flag=1; y=component(factor(m), 2); for(i=1, length(y), if(y[i] >= p1, flag=0; break); ); return(flag) }
powerfreep3(n, p, k) = { c=0; pc=0; forprime(x=2, n, pc++; if(ispowerfree(x+k, p)==0, c++; print1(x", "); ) ); print(); print(c", "pc", "c/pc+.0) }
CROSSREFS
Includes A007522 and A141965.
Sequence in context: A091531 A036259 A004628 * A263874 A014663 A007522
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 08 2003
STATUS
approved