login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089198
Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of non-squashing partitions of n into distinct parts of which the greatest is k.
0
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 2, 2, 1, 1, 1
OFFSET
0,33
LINKS
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
The nonzero values of T(n, m) lie within a certain cone: T(n, m) = 0 if m < n/2 or if m > n. For m <= n <= 2m, T(n, m) = sum_{i=0}^{m-1} T(n-m, i).
For m <= n <= 2m, T(n, m) = b(n-m) if n < 2m, = b(n-m) - 1 if n = 2m, where b = A088567.
EXAMPLE
Triangle begins:
1
0 1
0 0 1
0 0 1 1
0 0 0 1 1
0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 0 0 2 1 1 1
0 0 0 0 1 2 1 1 1
MATHEMATICA
T[n_, m_] := T[n, m] = Which[n==m, 1, m<n/2 || m>n, 0, True, Sum[T[n-m, i], {i, 0, m-1}]];
Table[T[n, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 13 2019 *)
CROSSREFS
Row sums = A088567. Rows read from right to left also give (essentially) A088567.
Sequence in context: A086009 A086010 A321929 * A059607 A176724 A015318
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 10 2003
STATUS
approved