Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 08 2023 09:49:33
%S 1,7,23,31,47,49,71,73,79,89,103,127,151,161,167,191,199,217,223,233,
%T 239,263,271,311,329,337,343,359,367,383,431,439,463,479,487,497,503,
%U 511,529,553,599,601,607,623,631,647,713,719,721,727,743,751
%N Numbers k such that the multiplicative order of 2 modulo k is odd.
%C Odd numbers k such that A007733(k) = A002326((k-1)/2) is odd.
%H Amiram Eldar, <a href="/A036259/b036259.txt">Table of n, a(n) for n = 1..10000</a>
%e 2^3 = 1 mod 7, 3 is odd, so 7 is in the sequence.
%t Select[Range[1, 999, 2], OddQ[MultiplicativeOrder[2, #]]&] (* _Jean-François Alcover_, Dec 20 2017 *)
%o (PARI) is(n)=n%2 && znorder(Mod(2,n))%2 \\ _Charles R Greathouse IV_, Jun 24 2015
%o (Python)
%o from sympy import n_order
%o from itertools import count, islice
%o def A036259_gen(startvalue=1): # generator of terms >= startvalue
%o return filter(lambda n:n_order(2,n)&1,count(max(startvalue,1)|1,2))
%o A036259_list = list(islice(A036259_gen(),20)) # _Chai Wah Wu_, Feb 07 2023
%Y Cf. A002326, A007733, A036260, A053006.
%K nonn
%O 1,2
%A _David W. Wilson_