OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to 4 + sqrt(17).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (8,1).
FORMULA
a(n) = (4+sqrt(17))^n + (4-sqrt(17))^n.
O.g.f: 2*(-1+4*x)/(-1+8*x+x^2). - R. J. Mathar, Dec 02 2007
a(n) = 2*A088317(n). - R. J. Mathar, Sep 27 2014
EXAMPLE
a(4) = 8*a(3)+a(2) = 8*536+66 = 4354.
MATHEMATICA
LinearRecurrence[{8, 1}, {2, 8}, 30] (* Harvey P. Dale, Sep 21 2014 *)
RecurrenceTable[{a[0] == 2, a[1] == 8, a[n] == 8 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
PROG
(Magma) I:=[2, 8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
(PARI) x='x+O('x^30); Vec(2*(1-4*x)/(1-8*x-x^2)) \\ G. C. Greubel, Nov 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 11 2003
STATUS
approved