This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086594 a(n) = 8*a(n-1) + a(n-2), starting with a(0)=2 and a(1)=8. 5
 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, 82540140802, 670482282088, 5446398397506, 44241669462136, 359379754094594, 2919279702218888, 23713617371845698, 192628218676984472, 1564739366787721474 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n+1)/a(n) converges to 4 + sqrt(17). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (8,1). FORMULA a(n) = (4+sqrt(17))^n + (4-sqrt(17))^n. O.g.f: 2*(-1+4*x)/(-1+8*x+x^2). - R. J. Mathar, Dec 02 2007 a(n) = 2*A088317(n). - R. J. Mathar, Sep 27 2014 EXAMPLE a(4) = 8*a(3)+a(2) = 8*536+66 = 4354. MATHEMATICA LinearRecurrence[{8, 1}, {2, 8}, 30] (* Harvey P. Dale, Sep 21 2014 *) RecurrenceTable[{a[0] == 2, a[1] == 8, a[n] == 8 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *) PROG (MAGMA) I:=[2, 8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016 (PARI) x='x+O('x^30); Vec(2*(1-4*x)/(1-8*x-x^2)) \\ G. C. Greubel, Nov 07 2018 CROSSREFS Cf. A003285. Sequence in context: A011836 A100623 A231280 * A132219 A226730 A202553 Adjacent sequences:  A086591 A086592 A086593 * A086595 A086596 A086597 KEYWORD nonn,easy AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 12:33 EST 2018. Contains 318047 sequences. (Running on oeis4.)