OFFSET
1,1
COMMENTS
Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j).
Level n of the left-hand half of the tree consists of 2^(n-1) nodes: 1/2; 1/3, 2/3; 1/4, 3/4, 2/5, 3/5; 1/5, 4/5, 3/7, 4/7, 2/7, 5/7, 3/8, 5/8; ... .
The right-hand half is identical to the left-hand half. - Michel Dekking, Oct 05 2017
n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters' comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A020650(n)/A020651(n) is also an enumeration system of all positive rationals (Yu-Ting system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306. The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), and A268087 (A162909+A162910). - Yosu Yurramendi, Apr 06 2016
REFERENCES
Johannes Kepler, Mysterium cosmographicum, Tuebingen, 1596, 1621, Caput XII.
Johannes Kepler, Harmonice Mundi, Linz, 1619, Liber III, Caput II.
Johannes Kepler, The Harmony of the World [1619], trans. E. J. Aiton, A. M. Duncan and J. V. Field, American Philosophical Society, Philadelphia, 1997, p. 163.
LINKS
Johannes Kepler, Harmonices mundi libri V ... (A Latin original scanned in Internet Archive. The fraction-tree is illustrated on the page 27 of the third book (Liber III), which is on the page 117 of the PDF-document.)
Johannes Kepler, Excerpt from the Chapter II of the Book III of the Harmony of the World: On the seven harmonic divisions of the string (Illustrates the A020651/A086592-tree).
OEIS Wiki, Historical sequences
Pelegrí Viader, Jaume Paradís and Lluís Bibiloni, A New Light on Minkowski's ?(x) Function, J. Number Theory, 73 (2) (1998), 212-227. See p. 215.
FORMULA
MATHEMATICA
(* b = A020650 *) b[1] = 1; b[2] = 2; b[3] = 1; b[n_] := b[n] = Switch[ Mod[n, 4], 0, b[n/2 + 1] + b[n/2], 1, b[(n - 1)/2 + 1], 2, b[(n - 2)/2 + 1] + b[(n - 2)/2], 3, b[(n - 3)/2]]; a[n_] := b[2n]; Array[a, 100] (* Jean-François Alcover, Jan 22 2016 *)
PROG
(R)
maxlevel <- 15
d <- c(1, 2)
for(m in 0:maxlevel)
for(k in 1:2^m) {
d[2^(m+1) +k] <- d[k] + d[2^m+k]
d[2^(m+1)+2^m+k] <- d[2^(m+1)+k]
}
b <- vector()
for(m in 0:maxlevel) for(k in 0:(2^m-1)) b[2^m+k] <- d[2^(m+1)+k]
a <- vector()
for(n in 1:2^maxlevel) {a[2*n-1] <- b[n]; a[2*n] <- b[n+1]}
a[1:128]
# Yosu Yurramendi, May 16 2018
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
Antti Karttunen, Aug 28 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, May 24 2004
STATUS
approved