The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229742 a(n) = A071585(n) - A071766(n). 16
 0, 1, 2, 1, 3, 3, 1, 2, 4, 5, 4, 5, 1, 2, 3, 3, 5, 7, 7, 8, 5, 7, 7, 8, 1, 2, 3, 3, 4, 5, 4, 5, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Yosu Yurramendi, Jun 30 2014: (Start) If the terms (n>0) are written as an array (left-aligned fashion): 1, 2,1, 3,3, 1, 2, 4,5, 4, 5,1, 2, 3, 3, 5,7, 7, 8,5, 7, 7, 8,1,2, 3, 3,4, 5, 4, 5, 6,9,10,11,9,12,11,13,6,9,10,11,9,12,11,13,1,2,3,3,4,5,4,5,5,7,7,8,5,7,7,8, then the sum of the k-th row is 3^(k-1) and each column is an arithmetic sequence. The differences of the arithmetic sequences gives the sequence A071585 (a(2^(p+1)+k) - a(2^p+k) = A071585(k), p = 0,1,2,..., k = 0,1,2,...,2^p-1). The first terms of each column give A071766. The second terms of each column give A086593. So, A086593(n) = A071585(n) + A071766(n). If the rows (n>0) are written in a right-aligned fashion:                                                                            1,                                                                          2,1,                                                                      3,3,1,2,                                                              4,5,4,5,1,2,3,3,                                              5,7,7,8,5,7,7,8,1,2,3,3,4,5,4,5,    6,9,10,11,9,12,11,13,6,9,10,11,9,12,11,13,1,2,3,3,4,5,4,5,5,7,7,8,5,7,7,8, then each column is a Fibonacci sequence (a(2^(p+2)+k) = a(2^(p+1)+k) + a(2^p+k) p = 0,1,2,..., k = 0,1,2,...,2^p-1, with a_k(1) = A071585(k) and a_k(2) = A071766(k) being the first two terms of each column sequence). LINKS FORMULA From Yosu Yurramendi, May 26 2019: (Start) a(2^(m+1)+2^m+k) = A071585(    k) a(2^(m+1)    +k) = A071585(2^m+k), m >= 0, 0 <= k < 2^m. (End) EXAMPLE A229742/A071766 = 0, 1, 2, 1/2, 3, 3/2, 1/3, 2/3, 4, 5/2, 4/3, 5/3, 1/4, 2/5, 3/4, 3/5, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, ... (this is the HCS form of the Stern-Brocot tree). PROG (R) blocklevel <- 6 # arbitrary a <- 1 for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){   a[2^(m+1)+k]             <- a[2^m+k] + a[2^m+2^(m-1)+k]   a[2^(m+1)+2^(m-1)+k]     <- a[2^(m+1)+k]   a[2^(m+1)+2^m+k]         <- a[2^m+2^(m-1)+k]   a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+k] } a # Yosu Yurramendi, Jul 11 2014 CROSSREFS Cf. A071585, A071766, A086593, A238837. Sequence in context: A110569 A140815 A134840 * A126572 A162910 A098975 Adjacent sequences:  A229739 A229740 A229741 * A229743 A229744 A229745 KEYWORD nonn,frac AUTHOR N. J. A. Sloane, Oct 05 2013, at the suggestion of Kevin Ryde. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 08:36 EDT 2021. Contains 347713 sequences. (Running on oeis4.)