The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047679 Denominators in full Stern-Brocot tree. 39
 1, 2, 1, 3, 3, 2, 1, 4, 5, 5, 4, 3, 3, 2, 1, 5, 7, 8, 7, 7, 8, 7, 5, 4, 5, 5, 4, 3, 3, 2, 1, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 5, 7, 8, 7, 7, 8, 7, 5, 4, 5, 5, 4, 3, 3, 2, 1, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Numerators are A007305. Write n in binary; list run lengths; add 1 to last run length; make into continued fraction. Sequence gives denominator of fraction obtained. From Reinhard Zumkeller, Dec 22 2008: (Start)   For n > 1: a(n) = if A025480(n-1) != 0 and A025480(n) != 0 then = a(A025480(n-1)) + a(A025480(n)) else if A025480(n)=0 then a(A025480(n-1))+0 else 1+a(A025480(n-1));   a(n) = A007305(A054429(n)+2) and a(A054429(n)) = A007305(n+2);   A153036(n+1) = floor(A007305(n+2)/a(n)). (End) From Yosu Yurramendi, Jun 25 2014 and Jun 30 2014: (Start) If the terms are written as an array a(m, k) = a(2^(m-1)-1+k) with m >= 1 and k = 0, 1, ..., 2^(m-1)-1: 1, 2,1, 3,3, 2, 1, 4,5, 5, 4, 3, 3, 2,1, 5,7, 8, 7, 7, 8, 7,5,4, 5, 5, 4, 3, 3,2,1, 6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,5,7,8,7,7,8,7,5,4,5,5,4,3,3,2,1, then the sum of the m-th row is 3^(m-1), and each column is an arithmetic sequence. The differences of these arithmetic sequences give the sequence A007306(k+1). The first terms of columns are 1 for k = 0 and a(k-1) for k >= 1. In a row reversed version A(m, k) = a(m, m-(k+1)): 1 1,2 1,2,3,3, 1,2,3,3,4,5,5,4 1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5 1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,12,9,9,12,13,11,10,11,9,6 each column k >= 0 is constant, namely A007306(k+1). This row reversed version coincides with the array for A007305 (see the Jun 25 2014 comment there). (End) Looking at the plot, the sequence clearly shows a fractal structure. (The repeating pattern oddly resembles the [first completed] facade of the Sagrada Familia!) - Daniel Forgues, Nov 15 2019 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 N. J. A. Sloane, Stern-Brocot or Farey Tree FORMULA a(n) = SternBrocotTreeDen(n) # n starting from 1. From Yosu Yurramendi, Jul 02 2014: (Start) For m >0 and 0 <= k < 2^(m-1), with a(0)=1, a(1)=2: a(2^m+k-1) = a(2^(m-1)+k-1) + a((2^m-1)-k-1); a(2^m+2^(m-1)+k-1) = a(2^(m-1)+k-1). (End) a(2^m-2^q  ) = q+1, q >= 0, m > q a(2^m-2^q-1) = q+2, q >= 0, m > q+1. - Yosu Yurramendi, Jan 01 2015 a(2^(m+1)-1-k) = A007306(k+1), m >= 0, 0 <= k <= 2^m. - Yosu Yurramendi, May 20 2019 EXAMPLE E.g., 57->111001->[ 3,2,1 ]->[ 3,2,2 ]->3 + 1/(2 + 1/(2) ) = 17/2. For n=1,2, ... we get 2, 3/2, 3, 4/3, 5/3, 5/2, 4, 5/4, 7/5, 8/5, ... 1; 2,1; 3,3,2,1; 4,5,5,4,3,3,2,1; .... Another version of Stern-Brocot is A007305/A047679 = 1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, 3/4, 5/2, 2/5, 5/3, 3/5, 5, 1/5, 5/4, 4/5, ... MAPLE SternBrocotTreeDen := n -> SternBrocotTreeNum(((3*(2^floor_log_2(n)))-n)-1); # SternBrocotTreeNum given in A007305 and (((3*(2^floor_log_2(n)))-n)-1) is equal to A054429[n]. MATHEMATICA CFruns[ n_Integer ] := Fold[ #2+1/#1&, Infinity, Reverse[ MapAt[ #+1&, Length/@Split[ IntegerDigits[ n, 2 ] ], {-1} ] ] ] (* second program: *) a[n_] := Module[{LL = Length /@ Split[IntegerDigits[n, 2]]}, LL[[-1]] += 1; FromContinuedFraction[LL] // Denominator]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 25 2016 *) PROG (PARI) {a(n) = local(v, w); v = binary(n++); w = ; for( n=2, #v, if( v[n] != v[n-1], w = concat(w, 1), w[#w]++)); w[#w]++; contfracpnqn(w)[2, 1]} /* Michael Somos, Jul 22 2011 */ (R) a <- 1 for(m in 1:6) for(k in 0:(2^(m-1)-1)) {   a[2^m+        k] = a[2^(m-1)+k] + a[2^m-k-1]   a[2^m+2^(m-1)+k] = a[2^(m-1)+k] } a # Yosu Yurramendi, Dec 31 2014 CROSSREFS Cf. A007305, A007306, A054424, A152976. Sequence in context: A332434 A262209 A324338 * A179480 A245326 A241534 Adjacent sequences:  A047676 A047677 A047678 * A047680 A047681 A047682 KEYWORD nonn,easy,frac,nice,tabf,look AUTHOR EXTENSIONS Edited by Wolfdieter Lang, Mar 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 21:38 EDT 2021. Contains 345433 sequences. (Running on oeis4.)