The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324338 a(n) = A002487(1+A006068(n)). 4
 1, 1, 1, 2, 1, 3, 3, 2, 1, 4, 5, 3, 4, 3, 2, 5, 1, 5, 7, 4, 7, 5, 3, 8, 5, 4, 3, 7, 2, 7, 8, 5, 1, 6, 9, 5, 10, 7, 4, 11, 9, 7, 5, 12, 3, 11, 13, 8, 6, 5, 4, 9, 3, 10, 11, 7, 2, 9, 12, 7, 11, 8, 5, 13, 1, 7, 11, 6, 13, 9, 5, 14, 13, 10, 7, 17, 4, 15, 18, 11, 11, 9, 7, 16, 5, 17, 19, 12, 3, 14, 19, 11, 18, 13, 8, 21, 7, 6, 5, 11, 4, 13, 14, 9, 3, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Like in A324337, a few terms preceding each 2^k-th term (here always 1) seem to consist of a batch of nearby Fibonacci numbers (A000045) in some order. For example, a(65533) = 987, a(65534) = 610 and a(65535) = 1597. For all n > 0 A324338(n)/A324337(n) constitutes an enumeration system of all positive rationals. For all n > 0 A324338(n) + A324337(n) = A071585(n). - Yosu Yurramendi, Oct 22 2019 LINKS Antti Karttunen, Table of n, a(n) for n = 0..16384 Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65537 FORMULA a(n) = A002487(1+A006068(n)). a(2^n) = 1 for all n >= 0. From Yosu Yurramendi, Oct 22 2019: (Start) a(2^m+2^(m-1)+k) = A324337(2^m+        k), m > 0, 0 <= k < 2^(m-1) a(2^m+        k) = A324337(2^m+2^(m-1)+k), m > 0, 0 <= k < 2^(m-1). (End) a(n) = A324337(A063946(n)), n > 0. Yosu Yurramendi, Nov 04 2019 a(n) = A002487(A233279(n)), n > 0. Yosu Yurramendi, Nov 08 2019 From Yosu Yurramendi, Nov 28 2019: (Start) a(2^(m+1)+k) - a(2^m+k) = A324337(k), m >= 0,  0 <= k < 2^m. a(A059893(2^(m+1)+A000069(k+1))) - a(A059893(2^m+A000069(k+1))) =  A071585(k), m >= 1,  0 <= k < 2^(m-1). a(A059893(2^m+ A001969(k+1))) = A071585(k),    m >= 0,  0 <= k < 2^(m-1). (End) From Yosu Yurramendi, Nov 29 2019: (Start) For n > 0: A324338(n) + A324337(n) = A071585(n). A324338(2*A001969(n)  )-A324337(2*A001969(n)  ) =  A071585(n-1) A324338(2*A001969(n)+1)-A324337(2*A001969(n)+1) = -A324337(n-1) A324338(2*A000069(n)  )-A324337(2*A000069(n)  ) = -A071585(n-1) A324338(2*A000069(n)+1)-A324337(2*A000069(n)+1) =  A324338(n-1) (End) a(n) = A002487(A233279(n)). Yosu Yurramendi, Dec 27 2019 PROG (PARI) A006068(n)= { my(s=1, ns); while(1, ns = n >> s; if(0==ns, break()); n = bitxor(n, ns); s <<= 1; ); return (n); } \\ From A006068 A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; A324338(n) = A002487(1+A006068(n)); (R) maxlevel <- 6 # by choice # b <- 0; A324338 <- 1; A324337 <- 1 for(i in 1:2^maxlevel) {   b[2*i  ] <-     b[i]   b[2*i+1] <- 1 - b[i]   A324338[2*i  ] <- A324338[i]          + A324337[i]*   b[i]   A324338[2*i+1] <- A324338[i]          + A324337[i]*(1-b[i])   A324337[2*i  ] <- A324338[i]*(1-b[i]) + A324337[i]   A324337[2*i+1] <- A324338[i]*   b[i]  + A324337[i]} # A324338[1:127]; A324337[1:127] # Yosu Yurramendi, Oct 22 2019 CROSSREFS Cf. A000045, A002487, A006068, A324288, A324337. Sequence in context: A336692 A332434 A262209 * A047679 A179480 A245326 Adjacent sequences:  A324335 A324336 A324337 * A324339 A324340 A324341 KEYWORD nonn AUTHOR Antti Karttunen, Feb 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 00:17 EDT 2021. Contains 345080 sequences. (Running on oeis4.)