OFFSET
0,4
COMMENTS
LINKS
FORMULA
a(2^n) = 1 for all n >= 0.
From Yosu Yurramendi, Oct 22 2019: (Start)
a(2^m+2^(m-1)+k) = A324337(2^m+ k), m > 0, 0 <= k < 2^(m-1)
a(2^m+ k) = A324337(2^m+2^(m-1)+k), m > 0, 0 <= k < 2^(m-1). (End)
From Yosu Yurramendi, Nov 28 2019: (Start)
a(2^(m+1)+k) - a(2^m+k) = A324337(k), m >= 0, 0 <= k < 2^m.
a(A059893(2^(m+1)+A000069(k+1))) - a(A059893(2^m+A000069(k+1))) = A071585(k), m >= 1, 0 <= k < 2^(m-1).
From Yosu Yurramendi, Nov 29 2019: (Start)
For n > 0:
PROG
(PARI)
A006068(n)= { my(s=1, ns); while(1, ns = n >> s; if(0==ns, break()); n = bitxor(n, ns); s <<= 1; ); return (n); } \\ From A006068
A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); };
(R)
maxlevel <- 6 # by choice #
for(i in 1:2^maxlevel) {
b[2*i ] <- b[i]
b[2*i+1] <- 1 - b[i]
#
# Yosu Yurramendi, Oct 22 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 23 2019
STATUS
approved