

A241534


Number of integer arithmetic means of 2 distinct divisors of n.


1



0, 0, 1, 1, 1, 2, 1, 3, 3, 2, 1, 7, 1, 2, 6, 6, 1, 6, 1, 7, 6, 2, 1, 16, 3, 2, 6, 7, 1, 12, 1, 10, 6, 2, 6, 18, 1, 2, 6, 16, 1, 12, 1, 7, 15, 2, 1, 29, 3, 6, 6, 7, 1, 12, 6, 16, 6, 2, 1, 34, 1, 2, 15, 15, 6, 12, 1, 7, 6, 12, 1, 39, 1, 2, 15, 7, 6, 12, 1, 29
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537


FORMULA

a(n) = Sum_{d1n, d2n, d1 < d2} (1  ceiling((d1+d2)/2) + floor((d1+d2)/2)).  Wesley Ivan Hurt, Oct 06 2020


EXAMPLE

Triangle T(n, k) starts for n > 2:
2,
3,
3,
2, 4,
4,
3, 5, 6,
2, 5, 6;
where T(n, k) = the values of k such that 2k = q + g; q, g are distinct divisors of n.
a(20) = 7 because (1,5), (2,4), (2,10), (2,20), (4,10), (4,20) and (10,20) are the 7 values of (g,q) such that (g+q)/2 is an integer.  Colin Barker, May 10 2014


MATHEMATICA

Table[Sum[Sum[(1  Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1  Ceiling[n/k] + Floor[n/k]) (1  Ceiling[n/i] + Floor[n/i]), {i, k  1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Oct 06 2020 *)


PROG

(PARI) a(n) = c=0; fordiv(n, g, fordiv(n, q, if(g<q && (g+q)%2==0, c++))); c \\ Colin Barker, May 10 2014


CROSSREFS

Cf. A027750.
Sequence in context: A047679 A179480 A245326 * A337137 A035050 A198790
Adjacent sequences: A241531 A241532 A241533 * A241535 A241536 A241537


KEYWORD

nonn


AUTHOR

Ilya Lopatin and JuriStepan Gerasimov, May 08 2014


EXTENSIONS

Several incorrect terms corrected, and more terms added by Colin Barker, May 10 2014


STATUS

approved



