login
A241537
Cubes c such that c + 1234567890 is prime where 1234567890 is the first pandigital number with digits in order.
1
1, 50653, 79507, 456533, 571787, 1295029, 1685159, 1771561, 2248091, 2685619, 3307949, 4173281, 7880599, 9393931, 10218313, 10793861, 11697083, 17373979, 18191447, 22665187, 30664297, 47045881, 70444997, 111284641, 146363183, 151419437, 156590819, 192100033
OFFSET
1,2
LINKS
EXAMPLE
50653 = 37^3 and appears in the sequence because 50653 + 1234567890 = 1234618543, which is prime.
79507 = 43^3 and appears in the sequence because 79507 + 1234567890 = 1234647397, which is prime.
64000 = 40^3 but not included in the sequence since 64000 + 1234567890 = 1234631890 = (2)*(5)*(29389)*(4201), which is not prime.
MAPLE
KD := proc() local a, c; c:=n^3; a:=c+1234567890; if isprime(a) then RETURN (c); fi; end: seq(KD(), n=1..1000);
MATHEMATICA
lst={}; Do[c=n^3; If[PrimeQ[c+1234567890], AppendTo[lst, c]], {n, 1, 1000}]; lst
(*For the b-file*) m=0; c=n^3; a=c+1234567890; Do[If[PrimeQ[a], m++; Print[m, " ", c]], {n, 1, 4*10^5}]
PROG
(PARI) s=[]; for(n=1, 1000, c=n^3; if(isprime(c+1234567890), s=concat(s, c))); s \\ Colin Barker, Apr 25 2014
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 25 2014
STATUS
approved