login
A241538
Squares s such that s + 1234567890 is prime.
1
1, 169, 1681, 6889, 8281, 11881, 24649, 27889, 41209, 57121, 58081, 67081, 80089, 101761, 124609, 175561, 185761, 201601, 212521, 332929, 380689, 413449, 461041, 508369, 534361, 609961, 625681, 654481, 683929, 693889, 822649, 829921, 833569, 1014049, 1018081
OFFSET
1,2
COMMENTS
1234567890 is the first pandigital number with digits in order.
LINKS
EXAMPLE
169 = 13^2 and appears in the sequence because 169 + 1234567890 = 1234568059, which is prime.
1681 = 41^2 and appears in the sequence because 1681 + 1234567890 = 1234569571, which is prime.
625 = 25^2 but is not included in the sequence since 625 + 1234567890 = 1234568515 = (5)*(246913703), which is not prime.
MAPLE
KD := proc() local a, s; s:=n^2; a:=s+1234567890; if isprime(a) then RETURN (s); fi; end: seq(KD(), n=1..2000);
MATHEMATICA
A241538 = {}; Do[s = n^2; If[PrimeQ[s + 1234567890], AppendTo[A241538, s]], {n, 2000}]; A241538
(* For the b-file *) c = 0; s = n^2; a = s + 1234567890; Do[If[PrimeQ[a], c++; Print[c, " ", s]], {n, 4*10^5}] (* Bajpai *)
Select[Range[1000]^2, PrimeQ[# + 1234567890] &] (* Alonso del Arte, Apr 25 2014 *)
KEYWORD
nonn,less
AUTHOR
K. D. Bajpai, Apr 25 2014
STATUS
approved