login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293477
Composite numbers k = concat(MSD(k),x) such that k' = x', where k' is the arithmetic derivative of k.
1
169, 1219, 1339, 1966, 3959, 7519, 11569, 17845, 35579, 37391, 38579, 77593, 94249, 94319, 95299, 96139, 97271, 97969, 99691, 106159, 107629, 115069, 137533, 150071, 168505, 188297, 247589, 339629, 345911, 352829, 362771, 363191, 365399, 370259, 381779, 382043
OFFSET
1,1
LINKS
EXAMPLE
169' = 69' = 26, so 169 is a term.
3959' = 959' = 144, so 3959 is a term.
MAPLE
with(numtheory): P:=proc(q) local a, k, n, p, x, y; for n from 2 to q do
if not isprime(n) then x:=n mod 10^(ilog10(n)); a:=x*add(op(2, p)/op(1, p), p=ifactors(x)[2]);
if n*add(op(2, p)/op(1, p), p=ifactors(n)[2])=a then print(n); fi; fi; od; end: P(10^6);
CROSSREFS
Cf. A000030 (MSD), A003415 (arithmetic derivative).
Sequence in context: A250988 A289338 A256979 * A264304 A241538 A231974
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Oct 10 2017
STATUS
approved