login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293478 Composite numbers k = concat(x,LSD(k)) such that k' = x', where k' is the arithmetic derivative of k. 0
17251, 109999, 112639, 130733, 269119, 318293, 390319, 463669, 1319519, 1726541, 1841839, 2010719, 2013187, 2311919, 5780221, 6493519, 7355839, 7533599, 10668773, 12652639, 14650639, 14951999, 21098459, 21500071, 25167845, 31008319, 35807999, 38687599, 39458719 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..29.

EXAMPLE

17251' = 1725' = 1340, so 17251 is a term.

109999' = 10999' = 664, so 109999 is a term.

MAPLE

with(numtheory): P:=proc(q) local a, k, n, p, x, y; for n from 2 to q do

if not isprime(n) then x:=trunc(n/10); a:=x*add(op(2, p)/op(1, p), p=ifactors(x)[2]);

if n*add(op(2, p)/op(1, p), p=ifactors(n)[2])=a then print(n); fi; fi; od; end: P(10^6);

CROSSREFS

Cf. A010879 (LSD), A003415 (arithmetic derivative).

Sequence in context: A233993 A043621 A334310 * A076774 A236447 A094413

Adjacent sequences:  A293475 A293476 A293477 * A293479 A293480 A293481

KEYWORD

nonn,base,easy

AUTHOR

Paolo P. Lava, Oct 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 03:33 EDT 2021. Contains 343872 sequences. (Running on oeis4.)