login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076774
2-nadirs of sigma: numbers k such that sigma(k-2) > sigma(k-1) > sigma(k) < sigma(k+1) < sigma(k+2).
1
17254, 27754, 68914, 69686, 82774, 92366, 111266, 133706, 152426, 194426, 267994, 277586, 359974, 387694, 389726, 429274, 448174, 452726, 457766, 471626, 474146, 522026, 527066, 531334, 554126, 567386, 595594, 610226, 674246, 674974
OFFSET
1,1
COMMENTS
I call n a "k-nadir" (or nadir of depth k) of the arithmetical function f if n satisfies f(n-k) > ... > f(n-1) > f(n) < f(n+1) < ... < f(n+k).
LINKS
MATHEMATICA
Select[Range[3, 10^6], DivisorSigma[1, # - 2] > DivisorSigma[1, # - 1] > DivisorSigma[1, # ] < DivisorSigma[1, # + 1] < DivisorSigma[1, # + 2] &]
Flatten[Position[Partition[DivisorSigma[1, Range[675000]], 5, 1], _? (#[[1]]> #[[2]]>#[[3]]<#[[4]]<#[[5]]&), 1, Heads->False]]+2 (* Harvey P. Dale, Jan 04 2022 *)
PROG
(Magma) ds:=DivisorSigma; f:=func<n|ds(1, n) lt ds(1, n+1) and ds(1, n+1) lt ds(1, n+2)>; f1:= func<n|ds(1, n) lt ds(1, n-1) and ds(1, n-1) lt ds(1, n-2)>; [k:k in [3..675000]|f(k) and f1(k)]; // Marius A. Burtea, Feb 19 2020
CROSSREFS
Cf. A000203.
Sequence in context: A043621 A334310 A293478 * A236447 A094413 A209967
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 14 2002
STATUS
approved