Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 08 2022 08:45:07
%S 17254,27754,68914,69686,82774,92366,111266,133706,152426,194426,
%T 267994,277586,359974,387694,389726,429274,448174,452726,457766,
%U 471626,474146,522026,527066,531334,554126,567386,595594,610226,674246,674974
%N 2-nadirs of sigma: numbers k such that sigma(k-2) > sigma(k-1) > sigma(k) < sigma(k+1) < sigma(k+2).
%C I call n a "k-nadir" (or nadir of depth k) of the arithmetical function f if n satisfies f(n-k) > ... > f(n-1) > f(n) < f(n+1) < ... < f(n+k).
%H Amiram Eldar, <a href="/A076774/b076774.txt">Table of n, a(n) for n = 1..10000</a>
%t Select[Range[3, 10^6], DivisorSigma[1, # - 2] > DivisorSigma[1, # - 1] > DivisorSigma[1, # ] < DivisorSigma[1, # + 1] < DivisorSigma[1, # + 2] &]
%t Flatten[Position[Partition[DivisorSigma[1,Range[675000]],5,1],_? (#[[1]]> #[[2]]>#[[3]]<#[[4]]<#[[5]]&),1,Heads->False]]+2 (* _Harvey P. Dale_, Jan 04 2022 *)
%o (Magma) ds:=DivisorSigma; f:=func<n|ds(1,n) lt ds(1,n+1) and ds(1,n+1) lt ds(1,n+2)>; f1:= func<n|ds(1,n) lt ds(1,n-1) and ds(1,n-1) lt ds(1,n-2)>; [k:k in [3..675000]|f(k) and f1(k)]; // _Marius A. Burtea_, Feb 19 2020
%Y Cf. A000203.
%K nonn
%O 1,1
%A _Joseph L. Pe_, Nov 14 2002