login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A235640
Primes p of the form n^2 + 1234567890 where 1234567890 is the first pandigital number with digits in order.
4
1234567891, 1234568059, 1234569571, 1234574779, 1234576171, 1234579771, 1234592539, 1234595779, 1234609099, 1234625011, 1234625971, 1234634971, 1234647979, 1234669651, 1234692499, 1234743451, 1234753651, 1234769491, 1234780411, 1234900819, 1234948579
OFFSET
1,1
LINKS
EXAMPLE
1234567891 is a prime and appears in the sequence because 1234567891 = 1^2 + 1234567890.
1234568059 is a prime and appears in the sequence because 1234568059 = 13^2 + 1234567890.
MAPLE
KD := proc() local a; a:=n^2+1234567890; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..2000);
MATHEMATICA
Select[Table[k^2+1234567890, {k, 1, 2000}], PrimeQ]
c=0; a=n^2+1234567890; Do[If[PrimeQ[a], c=c+1; Print[c, " ", a]], {n, 0, 200000}] (*b-file*)
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 20 2014
STATUS
approved