login
A235643
Total number of sides of a tetraflake-like fractal after n iterations, a(1) = 16 (see comments).
3
16, 68, 296, 1300, 5728, 25268, 111512, 492196, 2172592, 9590180, 42332936, 186866356, 824867584, 3641141012, 16072772984, 70948650820, 313182494032, 1382454408452, 6102448992488, 26937513095764, 118907935627168, 524885022092660, 2316954583165784
OFFSET
1,1
COMMENTS
Construction rule is same as for box and Vicsek fractals, but uses 6 boxes at initial stage (n = 1) and has only one symmetrical axis. The scale factor of these fractals is 1/3. The actual tetraflake fractals have scale factor of 1/2.
a(n) is the total number of sides at different lengths of a tetraflake-like fractal after n iterations. The perimeter (rounded down) is A235648(n). The total number of holes is A241271(n+1).
LINKS
Eric Weisstein's World of Mathematics, Box Fractal
Wikipedia, n-flake
Wikipedia, Vicsek Fractal
FORMULA
Conjecture from Colin Barker, Apr 21 2014: (Start)
a(n) = sqrt(2)*((3-sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(3+sqrt(2))^n).
a(n) = 6*a(n-1)-7*a(n-2).
G.f.: 4*x*(-7*x+4) / (7*x^2-6*x+1). (End)
MATHEMATICA
LinearRecurrence[{6, -7}, {16, 68}, 30] (* Harvey P. Dale, Jun 14 2014 *)
PROG
(Small Basic)
a[0] = 10
a[1] = 16
For n = 2 To 20
t1 = a[n-1]*3
t2 = a[n-2]*2
t3 = 0
If n >= 3 then
for i = 3 to n
t3 = t3 + a[i-3]*2*Math.Power(3, n-i+1)
EndFor
EndIf
a[n] = t1 + t2 + t3
TextWindow.Write(a[n-1]+", ")
EndFor
CROSSREFS
Cf. A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240840 (hendecaflake), A240735 (dodecaflake), A240841 (tridecaflake).
Cf. A063628 (hexaflake).
Cf. A240916, A240917 (triflake-like); A238777 (tetraflake-like).
Sequence in context: A178574 A005906 A247663 * A297886 A298491 A298291
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Apr 20 2014
EXTENSIONS
More terms from Harvey P. Dale, Jun 14 2014
STATUS
approved