login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A240735
Floor(6^n/(3+sqrt(3))^n).
10
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 17, 21, 27, 35, 44, 56, 71, 90, 115, 146, 185, 235, 298, 378, 479, 607, 770, 977, 1238, 1570, 1991, 2525, 3202, 4060, 5148, 6527, 8276, 10494, 13306, 16872, 21393, 27125, 34393, 43609, 55294, 70111, 88897, 112717, 142919
OFFSET
0,4
COMMENTS
a(n) is the perimeter (rounded down) of a dodecaflake after n iterations, let a(0) = 1. The total number of sides is 12*A000400(n). The total number of holes is A240846. 3 + sqrt(3) = A165663.
MAPLE
A240735:=n->floor(6^n/(3+sqrt(3))^n); seq(A240735(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Table[Floor[6^n/(3 + Sqrt[3])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
PROG
(PARI) {a(n)=floor(6^n/(3+sqrt(3))^n)}
for (n=0, 100, print1(a(n), ", "))
CROSSREFS
Cf. A000400, A240846, A165663, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake).
Sequence in context: A063827 A241651 A127217 * A057042 A063595 A316080
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Apr 11 2014
STATUS
approved