|
|
A240846
|
|
a(0)=0, a(1)=1, a(n) = a(n-1)*12 + 13.
|
|
2
|
|
|
0, 1, 25, 313, 3769, 45241, 542905, 6514873, 78178489, 938141881, 11257702585, 135092431033, 1621109172409, 19453310068921, 233439720827065, 2801276649924793, 33615319799097529, 403383837589170361, 4840606051070044345, 58087272612840532153
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the total number of holes in a dodecaflake after n iterations.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2^(2*n+1)*3^n - 13)/11 for n>0.
a(n) = 13*a(n-1) - 12*a(n-2) for n>2.
G.f.: x*(1+12*x) /((1-x)*(1-12*x)). (End).
E.g.f.: (11 - 13*exp(x) + 2*exp(12*x))/11. - G. C. Greubel, Feb 06 2020
|
|
MAPLE
|
|
|
MATHEMATICA
|
Join[{0}, NestList[12#+13&, 1, 20]] (* or *) LinearRecurrence[{13, -12}, {0, 1, 25}, 30] (* Harvey P. Dale, Sep 08 2017 *)
|
|
PROG
|
(PARI) {a(n)=if(n<=0, 0, if(n<2, 1, a(n-1)*12+13))}
for(n=0, 20, print1(a(n), ", "))
(Magma) [0] cat [(2^(2*n+1)*3^n - 13)/11: n in [1..20]]; // G. C. Greubel, Feb 06 2020
(Sage) [0]+[(2^(2*n+1)*3^n - 13)/11 for n in (1..20)] # G. C. Greubel, Feb 06 2020
(GAP) Concatenation([0], List([1..20], n-> (2^(2*n+1)*3^n - 13)/11 )); # G. C. Greubel, Feb 06 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|