login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240846
a(0)=0, a(1)=1, a(n) = a(n-1)*12 + 13.
2
0, 1, 25, 313, 3769, 45241, 542905, 6514873, 78178489, 938141881, 11257702585, 135092431033, 1621109172409, 19453310068921, 233439720827065, 2801276649924793, 33615319799097529, 403383837589170361, 4840606051070044345, 58087272612840532153
OFFSET
0,3
COMMENTS
a(n) is the total number of holes in a dodecaflake after n iterations.
FORMULA
From Colin Barker, Apr 13 2014: (Start)
a(n) = (2^(2*n+1)*3^n - 13)/11 for n>0.
a(n) = 13*a(n-1) - 12*a(n-2) for n>2.
G.f.: x*(1+12*x) /((1-x)*(1-12*x)). (End).
E.g.f.: (11 - 13*exp(x) + 2*exp(12*x))/11. - G. C. Greubel, Feb 06 2020
MAPLE
A240846:=n->`if`(n=0, 0, (2^(1+2*n)*3^n-13)/11); seq(A240846(n), n=0..20); # Wesley Ivan Hurt, Apr 13 2014
MATHEMATICA
Join[{0}, NestList[12#+13&, 1, 20]] (* or *) LinearRecurrence[{13, -12}, {0, 1, 25}, 30] (* Harvey P. Dale, Sep 08 2017 *)
PROG
(PARI) {a(n)=if(n<=0, 0, if(n<2, 1, a(n-1)*12+13))}
for(n=0, 20, print1(a(n), ", "))
(Magma) [0] cat [(2^(2*n+1)*3^n - 13)/11: n in [1..20]]; // G. C. Greubel, Feb 06 2020
(Sage) [0]+[(2^(2*n+1)*3^n - 13)/11 for n in (1..20)] # G. C. Greubel, Feb 06 2020
(GAP) Concatenation([0], List([1..20], n-> (2^(2*n+1)*3^n - 13)/11 )); # G. C. Greubel, Feb 06 2020
CROSSREFS
Cf. A240735.
Sequence in context: A264274 A278876 A053805 * A228255 A125437 A250318
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Apr 13 2014
EXTENSIONS
Name changed by Colin Barker, Apr 13 2014
STATUS
approved