login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240738
Number of compositions of n having exactly three fixed points.
3
1, 1, 3, 7, 12, 30, 61, 126, 258, 537, 1083, 2205, 4465, 9023, 18192, 36612, 73633, 147893, 296818, 595313, 1193351, 2391121, 4789448, 9590503, 19199906, 38430421, 76910470, 153901337, 307932963, 616076971, 1232495756, 2465545205, 4931986957, 9865425657
OFFSET
6,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 6..1000
FORMULA
a(n) ~ c * 2^n, where c = 0.01795631780689407343024911217251418606332716557572090051127381129853009022... . - Vaclav Kotesovec, Sep 07 2014
EXAMPLE
a(8) = 3: 1214, 1232, 12311.
a(9) = 7: 1134, 1224, 1233, 12141, 12312, 12321, 123111.
a(10) = 12: 11341, 12115, 12142, 12241, 12313, 12322, 12331, 121411, 123112, 123121, 123211, 1231111.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, series(
add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 4))
end:
a:= n-> coeff(b(n, 1), x, 3):
seq(a(n), n=6..45);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 4}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 3}]; Table[a[n], {n, 6, 45}] (* Jean-François Alcover, Nov 07 2014, after Maple *)
CROSSREFS
Column k=3 of A238349 and of A238350.
Sequence in context: A007626 A193297 A377572 * A047068 A167490 A081533
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 11 2014
STATUS
approved