login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193297
Triangle read by rows: T(n,k) = number of pairs of partitions of n that have block distance k (n >= 2, 2 <= k <= n).
3
1, 3, 7, 12, 28, 65, 50, 140, 325, 811, 225, 700, 1950, 4866, 12762, 1092, 3675, 11375, 34062, 89334, 244588, 5684, 20384, 68250, 227080, 714672, 1956704, 5574956, 31572, 119364, 425880, 1532790, 5360040, 17610336, 50174604, 148332645
OFFSET
2,2
LINKS
F. Ruskey and J. Woodcock, The Rand and block distances of pairs of set partitions, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, Counting and computing the Rand and block distances of pairs of set partitions, Journal of Discrete Algorithms, Volume 16, October 2012, Pages 236-248. - From N. J. A. Sloane, Oct 03 2012
EXAMPLE
Triangle begins
1
3 7
12 28 65
50 140 325 811
225 700 1950 4866 12762
1092 3675 11375 34062 89334 244588
5684 20384 68250 227080 714672 1956704 5574956
31572 119364 425880 1532790 5360040 17610336 50174604 148332645
...
CROSSREFS
Row sums give A193274.
Column k=2 gives A105479.
T(n,n) gives A152525.
Sequence in context: A182941 A063072 A007626 * A377572 A240738 A047068
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Aug 26 2011
STATUS
approved