login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193296
G.f. satisfies: A(x) = 1+x + x^2*A( (A(x)-1-x)/x ).
2
1, 1, 1, 1, 2, 5, 15, 51, 191, 773, 3338, 15243, 73131, 366815, 1916260, 10394665, 58404853, 339223859, 2033188222, 12556915219, 79807729238, 521399203037, 3497978659977, 24076009827669, 169865542733652, 1227553152971419, 9079751310622581
OFFSET
0,5
LINKS
FORMULA
G.f. satisfies: A(x/A(x)) = 1 + (1+x)*x/A(x).
G.f. satisfies: A(x) = 1+x + x*Series_Reversion(x/A(x)).
a(n) = [x^(n-2)] A(x)^(n-1)/(n-1) for n>=2 with a(0)=a(1)=1.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 5*x^5 + 15*x^6 + 51*x^7 +...
where
(A(x)-1-x)/x = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 51*x^6 + 191*x^7 +...
A((A(x)-1-x)/x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 191*x^6 +...
A(x)*A(x/A(x)) = 1 + 2*x + 2*x^2 + x^3 + 2*x^4 + 5*x^5 + 15*x^6 + 51*x^7 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n-1, A=1+x+x*serreverse(x/A+O(x^n))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A279556 A108307 A275605 * A304454 A287253 A117426
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2011
STATUS
approved