|
|
A240572
|
|
a(n) = floor(4^n/(2 + sqrt(2))^n).
|
|
11
|
|
|
1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 9, 10, 12, 14, 17, 20, 23, 27, 32, 38, 44, 52, 61, 71, 84, 98, 115, 135, 158, 185, 217, 255, 299, 350, 410, 480, 563, 659, 773, 905, 1061, 1243, 1456, 1706, 1999, 2342, 2744, 3215, 3767, 4413, 5170, 6057, 7097, 8314
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
a(n) is the perimeter (rounded down) of octaflake after n iterations, let a(0) = 1. The total number of sides is 8*A000302(n). The total number of holes is A084990(A000225(n)). sqrt(2) = A002193.
|
|
LINKS
|
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[Floor[4^n/(2 + Sqrt[2])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
|
|
PROG
|
(PARI) {a(n)=floor(4^n/(2 + sqrt(2))^n)}
for (n=0, 100, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|