The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240574 Number of partitions of n such that the number of odd parts is a part. 8
 0, 1, 0, 1, 1, 3, 2, 5, 6, 11, 11, 18, 23, 34, 40, 55, 73, 95, 120, 150, 202, 244, 320, 376, 511, 588, 784, 885, 1205, 1340, 1802, 1978, 2691, 2922, 3938, 4235, 5745, 6130, 8255, 8745, 11815, 12442, 16709, 17501, 23531, 24533, 32820, 34075, 45581, 47156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Table of n, a(n) for n=0..49. EXAMPLE a(8) counts these 6 partitions: 521, 4211, 41111, 332, 3221, 22211. MATHEMATICA z = 62; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240573 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240574 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240575 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240576 *) Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240577 *) Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240578 *) Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240579 *) CROSSREFS Cf. A240573, A240575, A240576, A240577, A240578, A240579. Sequence in context: A308410 A286111 A338209 * A050061 A058638 A201218 Adjacent sequences: A240571 A240572 A240573 * A240575 A240576 A240577 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 00:10 EDT 2023. Contains 365503 sequences. (Running on oeis4.)