login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A240574
Number of partitions of n such that the number of odd parts is a part.
8
0, 1, 0, 1, 1, 3, 2, 5, 6, 11, 11, 18, 23, 34, 40, 55, 73, 95, 120, 150, 202, 244, 320, 376, 511, 588, 784, 885, 1205, 1340, 1802, 1978, 2691, 2922, 3938, 4235, 5745, 6130, 8255, 8745, 11815, 12442, 16709, 17501, 23531, 24533, 32820, 34075, 45581, 47156
OFFSET
0,6
EXAMPLE
a(8) counts these 6 partitions: 521, 4211, 41111, 332, 3221, 22211.
MATHEMATICA
z = 62; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240573 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240574 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240575 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240576 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240577 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240578 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240579 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 10 2014
STATUS
approved