login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338209
a(1) = 1, a(n) is the least m not already in the sequence whose binary expansion ends with the binary expansion of the binary weight of a(n-1).
3
1, 3, 2, 5, 6, 10, 14, 7, 11, 15, 4, 9, 18, 22, 19, 23, 12, 26, 27, 20, 30, 28, 31, 13, 35, 39, 36, 34, 38, 43, 44, 47, 21, 51, 52, 55, 29, 60, 68, 42, 59, 37, 63, 46, 76, 67, 71, 84, 75, 92, 100, 79, 45, 108, 116, 124, 53, 132, 50, 83, 140, 87, 61, 69, 91, 77
OFFSET
1,2
COMMENTS
Define binary weight wt(n) as A000120(n), the number of 1s in the binary expansion of n. Let w = A000120(a(n-1)) the binary weight of the previous term. In other words, a(n) is the least m not already in the sequence such that m mod 2^k = w, where k = floor(1 + log_2 w).
Likely a permutation of the natural numbers.
The numbers m = 2^k with 0 <= k <= 3 appear at indices {1, 3, 11, 222}. The term 16 has not appeared for n <= 2^14 and may not until n approaches 2^16.
The numbers m = (2^k + 1) appear at indices {2, 4, 12, 223, ...}. The numbers m = 2^k or (2^k + 1) require n approximately equal to 2^m in order to appear in the sequence.
The numbers m = (2^k - 1) with 1 <= k <= 14 appear at indices {1, 2, 8, 10, 23, 43, 130, 278, 447, 758, 1390, 2525, 4719, 9333}, respectively.
The plot exhibits dendritic streams of residues r (mod 2^k). We can identify coordinates (x, y) = (n, a(n)) on the plot where the streams branch.
The branches of the tree in the plot contain m congruent to r (mod 2^k), where r is a term (except the last term) in row (k-1) of A049773.
Given 2^14 terms of this sequence, we see 2 or 3 successive invocations of w, otherwise, w appears just once before a different value succeeds it in the next term.
2^4 appears at index 47201. - Michael S. Branicky, Dec 16 2020
A permutation of the integers since n appears at or before index 2^n - 1, the first number with binary weight n. - Michael S. Branicky, Dec 16 2020
LINKS
Michael De Vlieger, Annotated plot (n, a(n)) for 1 <= n <= 2^8, color coded to show k (mod 8).
Michael De Vlieger, Enlarged plot (n, a(n)) for 1 <= n <= 2^14, color coded to show k (mod 8).
Michael De Vlieger, Log-log plot (n, a(n)) for 1 <= n <= 2^14, color coded to show k (mod 8), showing branching points.
Michael De Vlieger, Persistence plot (n, a(n)) for 1 <= n <= 2^8, color coded to show consecutive repetitions of the same binary weight.
Wikipedia, Hamming weight
EXAMPLE
a(2) = 3 since the binary weight of 1 is 1, and 3 = 1 (mod 2^1).
a(3) = 2 since wt(3) = 2, and 2 = 2 (mod 2^2).
a(4) = 5 since wt(2) = 1, 5 = 1 (mod 2^1), etc.
MATHEMATICA
Nest[Append[#, Block[{k = 1, r = DigitCount[#[[-1]], 2, 1], s}, s = IntegerLength[r, 2]; While[Nand[FreeQ[#, k], Mod[k, 2^s] == r], k++]; k]] & @@ {#, Length@ #} &, {1}, 2^7]]
PROG
(Python)
def aupto(n):
alst, used = [1], {1}
for i in range(2, n+1):
binprev = bin(alst[-1])[2:]
binwt = binprev.count("1")
pow2 = 2**(len(bin(binwt))-2)
while binwt in used: binwt += pow2
alst.append(binwt); used.add(binwt)
return alst # use alst[n-1] for a(n)
print(aupto(66)) # Michael S. Branicky, Dec 16 2020
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Michael De Vlieger, Dec 16 2020
STATUS
approved