OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences.
Index entries for linear recurrences with constant coefficients, signature (8,1).
FORMULA
a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.
a(n) = A086594(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(4*x)*cosh(sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).
a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
a(n) = A041024(n-1), n>0. - R. J. Mathar, Sep 11 2008
G.f.: (1-4*x)/(1-8*x-x^2). - Philippe Deléham, Nov 16 2008 and Nov 20 2008
a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - Harvey P. Dale, May 07 2012
MATHEMATICA
LinearRecurrence[{8, 1}, {1, 4}, 30] (* or *) With[{c=Sqrt[17]}, Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)), {n, 30}]] (* Harvey P. Dale, May 07 2012 *)
PROG
(Maxima)
a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
makelist(A088317(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */
(Magma) [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
(SageMath)
A088317=BinaryRecurrenceSequence(8, 1, 1, 4)
[A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003
STATUS
approved