login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088317
a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.
4
1, 4, 33, 268, 2177, 17684, 143649, 1166876, 9478657, 76996132, 625447713, 5080577836, 41270070401, 335241141044, 2723199198753, 22120834731068, 179689877047297, 1459639851109444, 11856808685922849, 96314109338492236, 782369683393860737, 6355271576489378132, 51624542295308885793
OFFSET
0,2
FORMULA
a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.
a(n) = A086594(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(4*x)*cosh(sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).
a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
a(n) = A041024(n-1), n>0. - R. J. Mathar, Sep 11 2008
G.f.: (1-4*x)/(1-8*x-x^2). - Philippe Deléham, Nov 16 2008 and Nov 20 2008
a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - Harvey P. Dale, May 07 2012
MATHEMATICA
LinearRecurrence[{8, 1}, {1, 4}, 30] (* or *) With[{c=Sqrt[17]}, Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)), {n, 30}]] (* Harvey P. Dale, May 07 2012 *)
PROG
(Maxima)
a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$
makelist(A088317(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */
(Magma) [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
(SageMath)
A088317=BinaryRecurrenceSequence(8, 1, 1, 4)
[A088317(n) for n in range(31)] # G. C. Greubel, Dec 13 2022
KEYWORD
nonn,easy
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003
STATUS
approved