login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.
4

%I #44 Dec 14 2022 06:12:46

%S 1,4,33,268,2177,17684,143649,1166876,9478657,76996132,625447713,

%T 5080577836,41270070401,335241141044,2723199198753,22120834731068,

%U 179689877047297,1459639851109444,11856808685922849,96314109338492236,782369683393860737,6355271576489378132,51624542295308885793

%N a(n) = 8*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 4.

%H G. C. Greubel, <a href="/A088317/b088317.txt">Table of n, a(n) for n = 0..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,1).

%F a(n) = ( (4+sqrt(17))^n + (4-sqrt(17))^n )/2.

%F a(n) = A086594(n)/2.

%F Lim_{n -> oo} a(n+1)/a(n) = 4 + sqrt(17).

%F From _Paul Barry_, Nov 15 2003: (Start)

%F E.g.f.: exp(4*x)*cosh(sqrt(17)*x).

%F a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*17^k*4^(n-2*k).

%F a(n) = (-i)^n * T(n, 4*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)

%F a(n) = A041024(n-1), n>0. - _R. J. Mathar_, Sep 11 2008

%F G.f.: (1-4*x)/(1-8*x-x^2). - _Philippe Deléham_, Nov 16 2008 and Nov 20 2008

%F a(n) = (1/2)*((33+8*sqrt(17))*(4-sqrt(17))^(n+2) + (33-8*sqrt(17))*(4+sqrt(17))^(n+2)). - _Harvey P. Dale_, May 07 2012

%t LinearRecurrence[{8,1},{1,4},30] (* or *) With[{c=Sqrt[17]},Simplify/@ Table[1/2 (c-4)((c+4)^n-(4-c)^n (33+8c)),{n,30}]] (* _Harvey P. Dale_, May 07 2012 *)

%o (Maxima)

%o a[0]:1$ a[1]:4$ a[n]:=8*a[n-1]+a[n-2]$ A088317(n):=a[n]$

%o makelist(A088317(n),n,0,20); /* _Martin Ettl_, Nov 12 2012 */

%o (Magma) [n le 2 select 4^(n-1) else 8*Self(n-1) +Self(n-2): n in [1..31]]; // _G. C. Greubel_, Dec 13 2022

%o (SageMath)

%o A088317=BinaryRecurrenceSequence(8,1,1,4)

%o [A088317(n) for n in range(31)] # _G. C. Greubel_, Dec 13 2022

%Y Cf. A002018, A002190, A013192, A028576, A041024, A041027.

%Y Cf. A053120, A058153, A058155, A072754, A075132.

%K nonn,easy

%O 0,2

%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003