OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..990
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (10,1).
FORMULA
a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 5.
a(n) = ((5+sqrt(26))^n + (5-sqrt(26))^n)/2.
a(n) = A086927(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = (5+sqrt(26)) = 10.099019... .
Lim_{n -> oo} a(n)/a(n+1) = 1/(5+sqrt(26)) = (sqrt(26)-5) = 0.099019... .
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(5*x)*cosh(sqrt(26)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*26^k*5^(n-2*k).
a(n) = (-i)^n * T(n, 5*i), with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
G.f.: (1-5*x)/(1-10*x-x^2). - R. J. Mathar, Sep 11 2008
MATHEMATICA
LinearRecurrence[{10, 1}, {1, 5}, 31] (* Harvey P. Dale, Dec 25 2021 *)
PROG
(Magma) [n le 2 select 5^(n-1) else 10*Self(n-1) + Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 12 2022
(SageMath)
A088320=BinaryRecurrenceSequence(10, 1, 1, 5)
[A088320(n) for n in range(31)] # G. C. Greubel, Dec 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003
STATUS
approved