The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088320 a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 5. 3
1, 5, 51, 515, 5201, 52525, 530451, 5357035, 54100801, 546365045, 5517751251, 55723877555, 562756526801, 5683289145565, 57395647982451, 579639768970075, 5853793337683201, 59117573145802085, 597029524795704051, 6029412821102842595, 60891157735824130001, 614940990179344142605 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 5.
a(n) = ((5+sqrt(26))^n + (5-sqrt(26))^n)/2.
a(n) = A086927(n)/2.
Lim_{n -> oo} a(n+1)/a(n) = (5+sqrt(26)) = 10.099019... .
Lim_{n -> oo} a(n)/a(n+1) = 1/(5+sqrt(26)) = (sqrt(26)-5) = 0.099019... .
From Paul Barry, Nov 15 2003: (Start)
E.g.f.: exp(5*x)*cosh(sqrt(26)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*26^k*5^(n-2*k).
a(n) = (-i)^n * T(n, 5*i), with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)
G.f.: (1-5*x)/(1-10*x-x^2). - R. J. Mathar, Sep 11 2008
MATHEMATICA
LinearRecurrence[{10, 1}, {1, 5}, 31] (* Harvey P. Dale, Dec 25 2021 *)
PROG
(Magma) [n le 2 select 5^(n-1) else 10*Self(n-1) + Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 12 2022
(SageMath)
A088320=BinaryRecurrenceSequence(10, 1, 1, 5)
[A088320(n) for n in range(31)] # G. C. Greubel, Dec 12 2022
CROSSREFS
Sequence in context: A106415 A212819 A041040 * A223002 A370172 A180511
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 05:57 EDT 2024. Contains 373492 sequences. (Running on oeis4.)