The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088320 a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 5. 3
 1, 5, 51, 515, 5201, 52525, 530451, 5357035, 54100801, 546365045, 5517751251, 55723877555, 562756526801, 5683289145565, 57395647982451, 579639768970075, 5853793337683201, 59117573145802085, 597029524795704051, 6029412821102842595, 60891157735824130001, 614940990179344142605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..990 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (10,1). Index entries for sequences related to Chebyshev polynomials. FORMULA a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 1 and a(1) = 5. a(n) = ((5+sqrt(26))^n + (5-sqrt(26))^n)/2. a(n) = A086927(n)/2. Lim_{n -> oo} a(n+1)/a(n) = (5+sqrt(26)) = 10.099019... . Lim_{n -> oo} a(n)/a(n+1) = 1/(5+sqrt(26)) = (sqrt(26)-5) = 0.099019... . From Paul Barry, Nov 15 2003: (Start) E.g.f.: exp(5*x)*cosh(sqrt(26)*x). a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*26^k*5^(n-2*k). a(n) = (-i)^n * T(n, 5*i), with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End) G.f.: (1-5*x)/(1-10*x-x^2). - R. J. Mathar, Sep 11 2008 MATHEMATICA LinearRecurrence[{10, 1}, {1, 5}, 31] (* Harvey P. Dale, Dec 25 2021 *) PROG (Magma) [n le 2 select 5^(n-1) else 10*Self(n-1) + Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 12 2022 (SageMath) A088320=BinaryRecurrenceSequence(10, 1, 1, 5) [A088320(n) for n in range(31)] # G. C. Greubel, Dec 12 2022 CROSSREFS Cf. A041040, A041043, A064019, A077392, A086927. Sequence in context: A106415 A212819 A041040 * A223002 A370172 A180511 Adjacent sequences: A088317 A088318 A088319 * A088321 A088322 A088323 KEYWORD easy,nonn AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Nov 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 05:57 EDT 2024. Contains 373492 sequences. (Running on oeis4.)