The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041043 Denominators of continued fraction convergents to sqrt(27). 3
 1, 5, 51, 260, 2651, 13515, 137801, 702520, 7163001, 36517525, 372338251, 1898208780, 19354426051, 98670339035, 1006057816401, 5128959421040, 52295652026801, 266607219555045, 2718367847577251, 13858446457441300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,52,0,-1). FORMULA a(n) = 52*a(n-2)-a(n-4). G.f.: -(x^2-5*x-1)/(x^4-52*x^2+1). - Colin Barker, Jul 15 2012 From Gerry Martens, Jul 11 2015: (Start) Interspersion of 2 sequences [a0(n),a1(n)]: a0(n) = ((9+5*sqrt(3))/(26+15*sqrt(3))^n+(9-5*sqrt(3))*(26+15*sqrt(3))^n)/18. a1(n) = (-1/(26+15*sqrt(3))^n+(26+15*sqrt(3))^n)/(6*sqrt(3)). (End) MATHEMATICA Denominator[Convergents[Sqrt[27], 50]] (* Harvey P. Dale, Apr 22 2012 *) CoefficientList[Series[- (x^2 - 5 x - 1)/(x^4 - 52 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 22 2013 *) a0[n_] := (9+5*Sqrt[3]+(9-5*Sqrt[3])*(26+15*Sqrt[3])^(2*n))/(18*(26+15*Sqrt[3])^n) // Simplify a1[n_] := (-1+(26+15*Sqrt[3])^(2*n))/(6*Sqrt[3]*(26+15*Sqrt[3])^n) // FullSimplify Flatten[MapIndexed[{a0[#], a1[#]}&, Range[10]]] (* Gerry Martens, Jul 10 2015 *) CROSSREFS Cf. A010482, A041042. Sequence in context: A134938 A068540 A208997 * A362516 A145641 A317782 Adjacent sequences: A041040 A041041 A041042 * A041044 A041045 A041046 KEYWORD nonn,cofr,frac,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 10:18 EDT 2023. Contains 363107 sequences. (Running on oeis4.)