login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362516
Number of vertex cuts in the n-gear graph.
1
1, 5, 51, 293, 1383, 6017, 25315, 104941, 431775, 1768377, 7218555, 29388325, 119381239, 484031537, 1959295251, 7919693789, 31972642767, 128937189161, 519476334379, 2091181293589, 8412008183079, 33816433653921, 135865503379395, 545598121631437, 2190000348372223
OFFSET
1,2
COMMENTS
Extended to n = 1 using formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Gear Graph
Eric Weisstein's World of Mathematics, Vertex Cut
FORMULA
a(n) = 2^(2*n+1) - 1 - A286188(n). - Pontus von Brömssen, Apr 23 2023
a(n) = 2*(4^n - 1) + 2*n - 4*n^2 - (3 - sqrt(17))/2)^n - (3 + sqrt(17))/2)^n.
a(n) = 10*a(n-1)-34*a(n-2)+44*a(n-3)-13*a(n-4)-14*a(n-5)+8*a(n-6).
G.f.: x*(-1 + 5*x - 35*x^2 + 91*x^3 + 20*x^4 + 16*x^5)/((-1 + x)^3*(1 - 7*x + 10*x^2 + 8*x^3)).
a(n) = -A206776(n)+2*4^n-2-4*n^2+2*n. - R. J. Mathar, Feb 18 2024
MATHEMATICA
Table[2 (4^n - 1) + 2 n - 4 n^2 - (1/2 (3 - Sqrt[17]))^n - (1/2 (3 + Sqrt[17]))^n, {n, 20}] // Expand
LinearRecurrence[{10, -34, 44, -13, -14, 8}, {1, 5, 51, 293, 1383, 6017}, 20]
CoefficientList[Series[(-1 + 5 x - 35 x^2 + 91 x^3 + 20 x^4 + 16 x^5)/((-1 + x)^3 (1 - 7 x + 10 x^2 + 8 x^3)), {x, 0, 20}], x]
CROSSREFS
Cf. A286188.
Sequence in context: A068540 A208997 A041043 * A369295 A145641 A317782
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 23 2023
EXTENSIONS
More terms (based on data in A286188) from Pontus von Brömssen, Apr 23 2023
STATUS
approved