login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362518
Number of vertex cuts in the n-helm graph.
0
1, 12, 71, 354, 1617, 7020, 29563, 122214, 499493, 2026848, 8186895, 32969754, 132508729, 531842196, 2132610467, 8545773774, 34228238925, 137046552264, 548583066679, 2195514451074, 8785586531681, 35152894560252, 140643143849931, 562667104454454, 2250951652660597
OFFSET
1,2
COMMENTS
Sequence extended to n = 1 using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Helm Graph
Eric Weisstein's World of Mathematics, Vertex Cut
Index entries for linear recurrences with constant coefficients, signature (13, -67, 175, -244, 172, -48).
FORMULA
a(n) = 2^(2*n+1) - 1 - A286184(n). - Pontus von Brömssen, Apr 23 2023
a(n) = (2^n - 1)*(1 + 2^(n + 1) - n) - 3^n.
a(n) = 13*a(n-1)-67*a(n-2)+175*a(n-3)-244*a(n-4)+172*a(n-5)-48*a(n-6).
G.f.: x*(1 - x - 18*x^2 + 60*x^3 - 84*x^4 + 48*x^5)/((-1 + x)^2*(-1 + 2*x)^2*(-1 + 3*x)*(-1 + 4*x)).
MATHEMATICA
Table[(2^n - 1) (1 + 2^(n + 1) - n) - 3^n, {n, 20}]
LinearRecurrence[{13, -67, 175, -244, 172, -48}, {1, 12, 71, 354, 1617, 7020}, 20]
CoefficientList[Series[(1 - x - 18 x^2 + 60 x^3 - 84 x^4 + 48 x^5)/((-1 + x)^2 (-1 + 2 x)^2 (-1 + 3 x) (-1 + 4 x)), {x, 0, 20}], x]
CROSSREFS
Cf. A286184.
Sequence in context: A374977 A060930 A169725 * A209447 A219302 A338261
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 23 2023
EXTENSIONS
More terms (based on data in A286184) from Pontus von Brömssen, Apr 23 2023
STATUS
approved