login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374977
a(n) = Sum_{i+j+k+l=n, i,j,k,l >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l).
4
0, 0, 0, 1, 12, 70, 280, 885, 2364, 5586, 12000, 23870, 44660, 79272, 134768, 220565, 349440, 538270, 807840, 1187004, 1706840, 2415150, 3354120, 4601870, 6209612, 8303610, 10935960, 14309640, 18460260, 23708184, 30044000, 37967925, 47368480, 59022432, 72633816
OFFSET
1,5
LINKS
FORMULA
4-fold convolution of A000203.
Convolution of A000203 and A374951.
Convolution of A000385 with itself.
a(n) = Sum_{i=1..n-1} A000203(i)*A374951(n-i).
a(n) = Sum_{i=1..n-3} A000385(i)*A000385(n-i-2).
Column k=4 of A319083.
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / 52254720. - Vaclav Kotesovec, Sep 20 2024
PROG
(Python)
from sympy import divisor_sigma
def A374977(n): return sum((5*divisor_sigma(i+1, 3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-i-1, 3)-(5+6*(n-i-2))*divisor_sigma(n-i-1)) for i in range(1, n-2))//144
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Jul 26 2024
STATUS
approved