The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n. 5
 1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Column k is the k-fold self-convolution of sigma (A000203). - Alois P. Heinz, Feb 01 2021 LINKS Alois P. Heinz, Rows n = 0..200, flattened FORMULA The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x). EXAMPLE Triangle starts: [0] 1; [1] 0, 1; [2] 0, 3, 1; [3] 0, 4, 6, 1; [4] 0, 7, 17, 9, 1; [5] 0, 6, 38, 39, 12, 1; [6] 0, 12, 70, 120, 70, 15, 1; [7] 0, 8, 116, 300, 280, 110, 18, 1; [8] 0, 15, 185, 645, 885, 545, 159, 21, 1; [9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1; MAPLE P := proc(n, x) option remember; if n = 0 then 1 else x*add(numtheory:-sigma(n-k)*P(k, x), k=0..n-1) fi end: Trow := n -> seq(coeff(P(n, x), x, k), k=0..n): seq(Trow(n), n=0..9); # second Maple program: T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 01 2021 # Uses function PMatrix from A357368. PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022 MATHEMATICA T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *) CROSSREFS Columns k=0..2 give: A000007, A000203, A000385. Row sums are A180305. T(2n,n) gives A340993. Cf. A008298, A078521, A319933. Sequence in context: A274662 A186827 A207327 * A332099 A045406 A143468 Adjacent sequences: A319080 A319081 A319082 * A319084 A319085 A319086 KEYWORD nonn,tabl AUTHOR Peter Luschny, Oct 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 02:38 EDT 2024. Contains 372617 sequences. (Running on oeis4.)