OFFSET
1,5
COMMENTS
Also the Bell transform of -A038048(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
FORMULA
See Mathematica line.
Row sums give A010815 * n!.
EXAMPLE
The z-expansion of Product[(1-z^k)^r, {k,1,3}] is 1 - r*z + ((-3+r)*r*z^2)/2 -(r*(8-9*r +r^2)*z^3)/6, so the third row of the triangle is 0,-8,9,-1.
Triangle begins
1,
0, -1,
0, -3, 1,
0, -8, 9, -1,
0, -42, 59, -18, 1,
0, -144, 450, -215, 30, -1,
0, -1440, 3394, -2475, 565, -45, 1,
0, -5760, 30912, -28294, 9345, -1225, 63, -1,
0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1
...
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> -n!*numtheory:-sigma(n+1), 9); # Peter Luschny, Jan 26 2016
# Alternative:
P := proc(n, x) option remember; if n = 0 then 1 else
-(1/n)*x*add(numtheory:-sigma(n-k)*P(k, x), k=0..n-1) fi end:
Trow := n -> seq(n!*coeff(P(n, x), x, k), k=0..n):
seq(Trow(n), n=0..9); # Peter Luschny, Oct 03 2018
MATHEMATICA
w=16; (CoefficientList[ #, r]&/@ CoefficientList[Series[Product[(1-z^k)^r, {k, 1, w}], {z, 0, w}], z])Range[0, w]!
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, -n!*DivisorSigma[1, n + 1]], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
AUTHOR
Wouter Meeussen, Jan 07 2003
STATUS
approved