OFFSET
1,2
COMMENTS
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..100
Xiaojun Liu, Motohico Mulase, Adam Sorkin, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, arXiv:1304.0015 [math.AG], 2013.
H. Ochiai, Counting functions for branched covers of elliptic curves and quasi-modular forms, arXiv:math-ph/9909023, 1999.
FORMULA
a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
EXAMPLE
a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
MAPLE
a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # Emeric Deutsch, Jul 24 2005
MATHEMATICA
a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* Jean-François Alcover, Mar 23 2011 *)
PROG
(PARI) a(n)=(n-1)!*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
(Sage)
A038048 = lambda n: factorial(n-1)*sigma(n, 1)
[A038048(n) for n in (1..20)] # Peter Luschny, Jan 19 2016
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt
STATUS
approved