login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A038048
a(n) = (n-1)! * sigma(n).
24
1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
OFFSET
1,2
COMMENTS
sigma(n) = A000203(n) is the sum of the divisors of n.
Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size).
Left edge of triangle in A008298.
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
LINKS
Xiaojun Liu, Motohico Mulase, Adam Sorkin, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, arXiv:1304.0015 [math.AG], 2013.
FORMULA
a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
a(n) = A000142(n-1)*A000203(n). - Omar E. Pol, Feb 26 2014
EXAMPLE
a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
MAPLE
a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # Emeric Deutsch, Jul 24 2005
MATHEMATICA
a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* Jean-François Alcover, Mar 23 2011 *)
PROG
(PARI) a(n)=(n-1)!*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
(Sage)
A038048 = lambda n: factorial(n-1)*sigma(n, 1)
[A038048(n) for n in (1..20)] # Peter Luschny, Jan 19 2016
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt
STATUS
approved